When you enroll through our links, we may earn a small commission—at no extra cost to you. This helps keep our platform free and inspires us to add more value.

University of Washington logo

Computational Neuroscience

Master the Skills of Tomorrow with Coursera! From AI and Blockchain to Public Speaking and Psychology, Explore Courses Tailored for Your Success.

     
  • 4.6
  •  |
  • Reviews ( 1.1K )
Free

This Course Includes

  • iconcoursera
  • icon4.6 (1.1K reviews )
  • icon26 hours
  • iconenglish
  • iconOnline - Self Paced
  • iconcourse
  • iconUniversity of Washington

About Computational Neuroscience

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information.

What You Will Learn?

  • Introduction & Basic Neurobiology (Rajesh Rao) What do Neurons Encode? Neural Encoding Models (Adrienne Fairhall) Extracting Information from Neurons: Neural Decoding (Adrienne Fairhall) Information Theory & Neural Coding (Adrienne Fairhall) Computing in Carbon (Adrienne Fairhall) Computing with Networks (Rajesh Rao) Networks that Learn: Plasticity in the Brain & Learning (Rajesh Rao) Learning from Supervision and Rewards (Rajesh Rao).